Elementary Flux Modes Analysis of Functional Domain Networks Allows a Better Metabolic Pathway Interpretation

نویسندگان

  • Sabine Pérès
  • Liza Felicori
  • Franck Molina
چکیده

Metabolic network analysis is an important step for the functional understanding of biological systems. In these networks, enzymes are made of one or more functional domains often involved in different catalytic activities. Elementary flux mode (EFM) analysis is a method of choice for the topological studies of these enzymatic networks. In this article, we propose to use an EFM approach on networks that encompass available knowledge on structure-function. We introduce a new method that allows to represent the metabolic networks as functional domain networks and provides an application of the algorithm for computing elementary flux modes to analyse them. Any EFM that can be represented using the classical representation can be represented using our functional domain network representation but the fine-grained feature of functional domain networks allows to highlight new connections in EFMs. This methodology is applied to the tricarboxylic acid cycle (TCA cycle) of Bacillus subtilis, and compared to the classical analyses. This new method of analysis of the functional domain network reveals that a specific inhibition on the second domain of the lipoamide dehydrogenase (pdhD) component of pyruvate dehydrogenase complex leads to the loss of all fluxes. Such conclusion was not predictable in the classical approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Simple Rank Test to Distinguish Extreme Pathways from Elementary Modes in Metabolic Networks

Background: Metabolic pathway analysis is a powerful tool to study the metabolic structure of a cellular metabolism that comprises an intricate network for transforming metabolites through enzyme-catalyzed reactions. The approach is based on convex analysis to solve a homogeneous system of linear equations and inequality constraints derived from the steady state operation of mass conservation o...

متن کامل

Predicting novel pathways in genome-scale metabolic networks.

Elementary-modes analysis has become a well-established theoretical tool in metabolic pathway analysis. It allows one to decompose complex metabolic networks into the smallest functional entities, which can be interpreted as biochemical pathways. This analysis has, in medium-size metabolic networks, led to the successful theoretical prediction of hitherto unknown pathways. For illustration, we ...

متن کامل

Can the whole be less than the sum of its parts? Pathway analysis in genome-scale metabolic networks using elementary flux patterns.

Elementary modes represent a valuable concept in the analysis of metabolic reaction networks. However, they can only be computed in medium-size systems, preventing application to genome-scale metabolic models. In consequence, the analysis is usually constrained to a specific part of the known metabolism, and the remaining system is modeled using abstractions like exchange fluxes and external sp...

متن کامل

FluxAnalyzer: exploring structure, pathways, and flux distributions in metabolic networks on interactive flux maps

MOTIVATION The analysis of structure, pathways and flux distributions in metabolic networks has become an important approach for understanding the functionality of metabolic systems. The need of a user-friendly platform for stoichiometric modeling of metabolic networks in silico is evident. RESULTS The FluxAnalyzer is a package for MATLAB and facilitates integrated pathway and flux analysis f...

متن کامل

Interplay between Constraints, Objectives, and Optimality for Genome-Scale Stoichiometric Models

High-throughput data generation and genome-scale stoichiometric models have greatly facilitated the comprehensive study of metabolic networks. The computation of all feasible metabolic routes with these models, given stoichiometric, thermodynamic, and steady-state constraints, provides important insights into the metabolic capacities of a cell. How the feasible metabolic routes emerge from the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013